LCM Specification

PRODUCT TYPE：	2．4TFT SerialModule
PRODUCT P／N：	FBS024AT10－N01－SPEC
VERSION：	V 00

Customer（客户）		
INSPECTIONRESULT	TESTED BY	APPROVED BY
检测结果	检测人	确认人

Supplier（屏厂）		
DESIGNED BY	CHECKED BY	APPROVED BY

Revision History

Date	Rev.	Reason
2018.12.12	V00	NEW ISSUE

CONTENTS

■GENERAL DESCRIPTION
 ■LCM PARAMETER
 ■SERAL CHARACTERISTIC
 ■ABSOLUTE MAXIMUM RATINGS
 ■ELECTRICAL SPECIFICATIONS
 ■BACKLIGHT CHARACTERISTICS
 ■BLOCK DIAGRAM
 ■PIN DESCRIPTION
 ■OUTLINE DIMENSION
 ■OPTICAL SPECIFICATIONS
 -TIMING CHARACTERISTICS
 \square TFT serial screen protocol table without master terminal
 ■INSPECTION CRITERION
 ■PRECAUTIONS

\square

■ GENERAL DESCRIPTION

FBS024AT10-N01 is a TFT dot matrix LCD module.It is composed of a PCBA,color-LCD panel, driver IC, FPC and a backlight unit. The module display area contains 240×320 pixels. This product accords with RoHS environmental criterion.

■ LCM PARAMETER

Item	Contents	Unit	Notes
LCD Type	TFT TRANSMISSIVE	$/$	$/$
Viewing direction	$12: 00$	O^{\prime} Clock	$/$
PCBA Outside	$42.72(\mathrm{~W})^{*} 74.40(\mathrm{H})^{*} 10.70(\mathrm{~T})$	mm	$/$
LCM Outside Dimensions	$42.72(\mathrm{~W})^{*} 60.26(\mathrm{H})^{*} 2.40(\mathrm{~T})$	mm	$/$
Active Area (WxH)	$36.72(\mathrm{~W})^{*} 48.96(\mathrm{H})$	mm	$/$
Number of Dots	240×320	$/$	$/$
Driver IC	LT268A	$/$	$\mathrm{Vcc}=3.3 \mathrm{~V}$
Colors	262 K	$/$	$/$
Touch Type	NC	$/$	$/$
Backlight Type	$1 * 4=4 \mathrm{LEDS} / \mathrm{White}$	$/$	$\mathrm{Vbl}=3.1 \mathrm{~V}$
Backlight Luminance	250	$\mathrm{~cd} / \mathrm{m} 2$	$/$
Interface Type	TTL UART (TXD/RXD)	$/$	$5 \mathrm{PIN}(2.54)$
Input Voltage	$5.0 \mathrm{~V}(\mathrm{VDD})$	V	2 A

- SERAL CHARACTERISTIC

Item	MIN	Typical	MAX	Unit	Notes
Operating Voltage	4.75	5.0	5.5	V	VDD
Operating Current	---	250	---	mA	5 V Power
Operating Temperature	-20	25	70	${ }^{\circ} \mathrm{C}$	$/$
Storage Temperature	-30	25	80	${ }^{\circ} \mathrm{C}$	$/$
Serial Baud Rate	2400	9600	115200	bps	Standards
Serial Output Leve	3.0	3.2	3.3	V	H
Serial Input Leve	3.0	3.3	5.0	V	H
Extend Flash	16 M	64 M	128 M	bits	Nor Flash
Flash Memory	---	64 K	---	bits	MCU
SRAMMemory	---	8 K	---	bits	MCU
MCU Frequency	---	72 M	---	Hz	MCU

- ABSOLUTE MAXIMUM RATINGS(TFT,非PCBA)

Parameter	Symbol	Min	Max	Unit
Power for Circuit Driving	VCC	-0.3	4.6	\mathbf{V}
Power for Circuit Logic	IOVCC	-0.3	4.6	\mathbf{V}
Input voltage	Vin	-0.3	VCC +0.3	\mathbf{V}
Operating temperature	Top	-20	70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tst	-30	80	${ }^{\circ} \mathrm{C}$
Humidity	RH	$/$	$90 \%\left(\operatorname{Max} 60^{\circ} \mathrm{C}\right)$	$\mathbf{R H}^{2}$

■ ELECTRICAL SPECIFICATIONS(TFT,非PCBA)

Parameter	Symbol	Min	Typ	Max	Unit
Power for analog/logic	Vcc -GND	2.65	3.3	3.6	V
I/O power supply	IOVCC	1.65	3.3	3.6	V
Input Current	Idd	TBD	TBD	TBD	mA
Input voltage ' H' level	Vih	0.7 IOVCC	$/$	IOVCC	V
Input voltage ' L' level	Vil	GND	0	0.3 IOVCC	V
Output voltage ' H' level	Voh	0.8 IOVCC	I	IOVCC	V
Output voltage ' L' level	Vol	GND	0	$0.2 I O V C C$	V

- BACKLIGHT CHARACTERISTICS

Usingcondition:constantcurrentdrivingmethod (If=80mA(+/-10\%)

Item	Symbol	Min	Typ	Max	Unit	Condition
Forward voltage	Vf	2.9	3.1	3.3	V	$\mathrm{If}=80 \mathrm{~mA}$
Luminance with LCD	Lv	--	250	--	$\mathrm{cd} / \mathrm{m} 2$	$/$
Number of LED	$/$	$1 * 4=4$			Pcs	$/$
Connection mode	S	1 Serial4Parallel			$/$	$/$

BLOCK DIAGRAM

- PIN DESCRIPTION

CN1:TTL UART (5PIN-2.54mm)

Pin.No	Symbol	DESCRIPTION
1	VDD	Power Supply Voltage(5.0V+/-0.3V)
2	TXD	UART transmit data output of serial communication (3.3V)
3	RXD	UART receiving data input of serial communication (3.3V)
4	GND	Ground
5	BUSY	Software burning (L)

CN2: USB Software Upgrade (MCU and Flash)

Pin.No	Symbol	DESCRIPTION
1	VDD	Power Supply Voltage (5.0V+/-0.3V)
2	DM	USB Data Terminal (Positive)
3	DP	USB Data Terminal (Negative)
4	GND	Ground
5	GND	Ground

CN3: DAC Audio Output (2.54mm)

Pin.No	Symbol	DESCRIPTION
1	VCC_3.3V	IC Power Supply Voltage (3.3V+/-0.3V)
2	GND	Ground
3	TXD	UART transmit data output of serial communication (3.3V)
4	RXD	UART receiving data input of serial communication (3.3V)
5	/RST	MCU Reset output signal
6	PWM01	LT268A PWM output

OUTLINE DIMENSION

OPTICAL SPECIFICATIONS

Item		Symbol	Condition	Min	Typ	Max	Unit	Note	
Response time		Tr + Tf	$\begin{gathered} \theta=0^{\circ} \\ \Phi=0^{\circ} \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \end{gathered}$	-	20	40	ms	1	
Contrast ratio		Cr		-	350	-	-	1	
Luminanceuniformity		δ WHITE		80	-	-	\%	1	
Viewing angle range		θ	$\Phi=0^{\circ}$	-	60	-	deg	1	
		$\Phi=90^{\circ}$	-	60	-	deg			
		$\Phi=180^{\circ}$	-	60	-	deg			
		$\Phi=270^{\circ}$	-	40	-	deg			
CIE (x,y) chromaticity	Red		x	$\begin{gathered} \theta=0^{\circ} \\ \Phi=0^{\circ} \\ T a=25^{\circ} \mathrm{C} \end{gathered}$	-	0.610	-	1	1
			y		-	0.329	--		
	Green		x		-	0.299	-		
		y	-		0.567	-			
	Blue	x	-		0.143	-			
		y	-		0.111	-			
	White	x	-		0.308	-			
		y	-		0.327	-			

Definition of Viewing Angle $\boldsymbol{\theta}$ and Φ

Viewing Direction: 6 O'clock Direction
\square

■ TIMING CHARACTERISTICS
TBD
－TFT serial screen protocol table without master terminal

表2－1：串口屏指令集

主功能	细项功能	指令码 （1Byte）
显示图片	单张／多张图片	80h
	循环拨放	81h
	弹出图片	D8h
	循环卷动	D9h
	GIF 动画	88h
	数字图片	90h
显示控件圈片	显示单一控件图片	A0h
	取消单一控件图片	A1h
指标与造图	进度条指标图	B0h
	环形指标图	DCh
显示字库	字库－1	COh
	字库－2	C1h
	字库－3	C2h
	字库－4	C3h
背光亮度	设置亮度	BAh
	On／Off	BCh
版本侦测	版本侦测	BFh
开机指令	开机指令	9Ah
电阻屏校验	电阻屏校验指令	8Bh
串口屏侦测	联机检査	BEh

主功能	细项功能	$\begin{gathered} \text { 指令码 } \\ \text { (1 Byte) } \end{gathered}$
几何图形	画点	DFh
	直线	EOh
	空心圆形	E1h
	实心圆形	E2h
	带框实心圆形	E3h
	空心椭圆	E4h
	实心椭圆形	E5h
	带框实心椭圆	E6h
	空心矩形	E7h
	实心矩形	E8h
	带框矩形	E9h
	空心圆角矩形	EAh
	实心圆角矩形	EBh
	带框圆角矩形	ECh
	空心三角形	EDh
	实心三角形	EEh
	带框三角形	EFh
	圆柱体	F4h
	表格视窗	F6h

表2－2：上位机与 LT268A 串口屏协议表

主 功 能	细项 功能	主控端发送 （工业串口屏接收）								主 控 （工业串	端 接 收 口屏发送		
		$\left\|\begin{array}{c} \text { 起始㶡 } \\ \text { (1Bytes) } \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline \text { 指令码 } \\ \text { (1Byte) } \end{array}$	$\begin{gathered} \text { 序号 } \\ \text { (1Byte) } \end{gathered}$	指全复帾	$\begin{array}{\|c} \text { CRC 码 } \\ \text { (2Bytes) } \end{array}$	$\begin{gathered} \text { 结束码 } \\ \text { (4Bytes) } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { 起造碥 } \\ \text { (1Bytes) } \end{gathered}\right.$		信息确／反镨砳 （1Bytes）	CRC 䃃 （2Bytes）	$\begin{aligned} & \text { 附加信息 } \\ & \text { (2Bytes) } \end{aligned}$	$\begin{gathered} \text { 结束碥 } \\ \text { (4Bytes) } \end{gathered}$
$\begin{aligned} & \text { 显 } \\ & \text { 示 } \\ & \text { 图 } \\ & \text { 片 } \end{aligned}$	$\begin{gathered} \text { 单张/ } \\ \text { 多张園片 } \end{gathered}$	Start	80h	nn		CRC	End	Start	80h	信息码	CRC		End
	澵环拨放	Start	81h	nn		CRC	End	Start	81h	信息码	CRC		End
	弹出图片	Start	D8h	nn		CRC	End	Start	D8h	信息码	CRC		End
	㗏环卷动	Start	D9h	nn		CRC	End	Start	D9h	信息码	CRC		End
	GIF 动画	Start	88h	nn		CRC	End	Start	88h	信息码	CRC		End
	数字園片	Start	90h	nn	ddd．d	CRC	End	Start	90h	信息码	CRC		End
$\begin{aligned} & \text { 显 } \\ & \text { 示 } \\ & \text { 控 } \\ & \text { 件 } \\ & \text { 图 } \\ & \text { 片 } \end{aligned}$	显示单一控 件图片	Start	AOh	nn		CRC	End	Start	AOh	信息码	CRC		End
		按下控件園片时						Start	AOh	$\begin{array}{\|c\|} \hline \text { 控件倳片 } \\ \text { ID 号 }+01 \mathrm{~h} \end{array}$	CRC		End
		放开控牛图片时						Start	AOh	$\begin{array}{\|c\|} \hline \text { 控件倳片 } \\ \text { ID号 }+00 \mathrm{~h} \end{array}$	CRC	$\begin{array}{\|c} \hline \text { CCM1~8 } \\ \text { (32 Bytes) } \end{array}$	End
	$\begin{array}{c\|} \text { 取消单一控 } \\ \text { 件图片 } \end{array}$	Start	A1h	nn		CRC	End	Start	A1h	信息码	CRC		End
$\begin{aligned} & \text { 指 } \\ & \text { 标 } \\ & \text { 与 } \\ & \text { 造 } \\ & \text { 图 } \end{aligned}$	进度条指标 图	Start	B0h	nn	Vaule （2 Bytes）	CRC	End	Start	B0h	信息码	CRC		End
	环形指标图	Start	DCh	nn	S＿Angle， A Angle	CRC	End	Start	DCh	信息码	CRC		End
显 示 字 串	字库－1	Start	COh	nn	字符申 String	CRC	End	Start	COh	信息码	CRC		End
	字库－2	Start	C1h	nn	字符申 String	CRC	End	Start	C1h	信息码	CRC		End
	字库－3	Start	C2h	nn	字符申 String	CRC	End	Start	C2h	信息码	CRC		End
	字库－4	Start	C3h	nn	字符串 String	CRC	End	Start	C3h	信息码	CRC		End
背光 亮度	设置亮度	Start	BAh		$\begin{array}{\|c\|} \hline \text { BL } \\ (00 \sim 0 \mathrm{Fh}) \end{array}$	CRC	End	Start	BAh	信息码	CRC		End
	On／Off	Start	BCh		00 或 01	CRC	End	Start	BCh	信息码	CRC		End
合并指令／开机指令	合并／开机 指令	Start	9Ah	nn		CRC	End	Start	COM1～COM8（32 Bytes）				End
									9Ah	信息码	CRC		
电阻屏校验	电阻屏校验	Start	8Bh			CRC	End	Start	8Bh	信息码	CRC		End

$\begin{aligned} & \text { 主 } \\ & \text { 功 } \\ & \text { 能 } \end{aligned}$	细项 功能	主控端发送 （工业串口屏接收）						主 控 端 接 收 （工业串口屏发送）					
		$\left\|\begin{array}{c} \text { 起始伿 } \\ \text { (1Bytes) } \end{array}\right\|$	$\begin{gathered} \text { 指今国 } \\ \text { (1Byte) } \end{gathered}$	$\begin{gathered} \text { 度号 } \\ \text { (1Byte) } \end{gathered}$	指令䒼政	CRC 明 （2Bytes）	$\left\|\begin{array}{c} \text { 结束码 } \\ \text { (4Bytes) } \end{array}\right\|$	$\left\|\begin{array}{c} \text { 起始码 } \\ \text { (1Bytes) } \end{array}\right\|$	掝今吗 （1Byte）		$\left\|\begin{array}{c} \text { CRC 码 } \\ \text { (2Bytes) } \end{array}\right\|$	附加信息 （2Bytes）	$\left\|\begin{array}{c} \text { 结束码 } \\ \text { (4Bytes) } \end{array}\right\|$
几 何 圈 形	画点	Start	DFh	nn		CRC	End	Start	DFh	信息码	CRC		End
	直线	Start	EOh	nn		CRC	End	Start	EOh	信恳码	CRC		End
	空心囫形	Start	E1h	nn		CRC	End	Start	E1h	信恳码	CRC		End
	实心囫形	Start	E2h	nn		CRC	End	Start	E2h	信息码	CRC		End
	空心㤽囫	Start	E4h	nn		CRC	End	Start	E3h	信息薚	CRC		End
	实心陦岛形	Start	E5h	nn		CRC	End	Start	E5h	信息码	CRC		End
	带恇实心 椎園	Start	E6h	nn		CRC	End	Start	E6h	信息码	CRC		End
	空心迭形	Start	E7h	nn		CRC	End	Start	E7h	信息码	CRC		End
	实心知形	Start	E8h	nn		CRC	End	Start	E8h	信思码	CRC		End
	带恇知形	Start	E9h	nn		CRC	End	Start	E9h	信飠抜	CRC		End
	$\begin{gathered} \hline \text { 空心国角 } \\ \text { 矩形 } \\ \hline \end{gathered}$	Start	EAh	nn		CRC	End	Start	EAh	信息㱣	CRC		End
	实心罳角知形	Start	EBh	nn		CRC	End	Start	EBh	信思榾	CRC		End
	带恇國角知形	Start	ECh	nn		CRC	End	Start	ECh	信息码	CRC		End
	空心三角形	Start	EDh	nn		CRC	End	Start	EDh	信息码	CRC		End
	实心三角形	Start	EEh	nn		CRC	End	Start	EEh	信鬼和	CRC		End
	带框二角形	Start	EFh	nn		CRC	End	Start	EFh	信恳码	CRC		End
	囫性体	Start	F4h	nn		CRC	End	Start	F4h	信飠码	CRC		End
	表格视葍	Start	F6h	nn		CRC	End	Start	F6h	信息抜	CRC		End
串口屏侦测	联机检婁	Start	BEh			CRC	End	Start	5Ah		CRC		End
								Start	BEh	信虑醓	CRC		End
	服本检重	Start	BFh			CRC	End	Start	$\begin{aligned} & \text { MCU Code(5Bytes) }+ \\ & \text { Module Info. } \\ & \text { (42Bytes) } \end{aligned}$		CRC		End
								Start	BFh	信息和	CRC		End
$\begin{gathered} \text { LT268A } \\ \text { 最位 } \end{gathered}$	$\begin{aligned} & \text { Reset } \\ & \text { LT268A } \end{aligned}$	Start	BDh			CRC	End	Start	BDh		CRC		End

INSPECTION CRITERION

Sampling Method

Unless otherwise agreed upon in writing, the sampling inspection shall be applied to the Customer's incoming inspection.
1 Lot size: Quantity per shipment lot
2 Sampling type: Normal inspection, single sampling
3 Inspection level: II
4 Sampling table: MIL-STD-105D
5 Acceptable Quality Level(AQL): Major=0.65 Minor=1.5

Inspection Method

1) Ambient Condition:
a. Temperature: Room temperature $25 \pm 5^{\circ} \mathrm{C}$
b. Illumination: Single fluorescent lamp non-directive(300 to 700 Lux)
2) Viewing distance

The distance between the LCD and the inspector' s eyes shall be at least $30-50 \mathrm{~cm}$.
3) Viewing Angle

The inspection shall be conducted within normal viewing angle range.

Major Defect

No	Items	Inspection Standard	Classification of defects
1	All functional defects	1.No display 2.Display abnormally 3.Missing vertical, horizontal segment 4.Short circuit 5. Back-light no lighting, flickering and abnormal lighting.	
2	Missing	Missing component	Major
3	Outline dimension	Overall outline dimension beyond the drawing is not allowed.	
4	linearity	No more than 1.5%	

Cosmetic Defect

No	Items	Inspection Standard		Classification of defects
1	Clear Spot, Black Spot, white Spot, defect Pinhole, Foreign Particle, polarizer Dirt TP Dirt	For dark/white spot, size Φ is defined as $\Phi=(x+y) / 2$		Minor
		Size(mm)	Acceptable Qty	
		$\Phi \leq 0.15$	Ignore	
		$0.15<\Phi \leq 0.20$	2	
		$0.20<\Phi \leq 0.30$	1	
		$\Phi>0.30$	0	
2	(line defect) Black and White line Polarizer scratch	Define: Length L		Minor
		Width(mm)	Length(mm);Acceptable Qty	
		$\mathrm{W} \leq 0.03$	Ignore	
		$0.03<W \leq 0.05$	L ≤ 3.0; $\mathrm{N} \leq 2$	
		$0.05<W \leq 0.1$	$\mathrm{L} \leq 2.0$; $\mathrm{N} \leq 2$	
		$0.1<W$	Define as spot defect	
3	Dim Spots Circle shaped and dim edged defects	1		Minor
		Size(mm)	Acceptable Qty	
		$\Phi \leq 0.2$	Ignore	
		$0.20<\Phi \leq 0.40$	2	
		$0.40<\Phi \leq 0.60$	1	
		$\Phi>0.60$	0	

\square

- RELIABILITY

N0.	TEST ITEM	CONDITIONS
1	High Temperature Storage	$80^{\circ} \mathrm{C} ; 72 \mathrm{hrs}$
2	Low Temperature Storage	$-30^{\circ} \mathrm{C} ; 72 \mathrm{hrs}$
3	HighTemperature Operation	$70^{\circ} \mathrm{C} ; 72 \mathrm{hrs}$
4	Low Temperature Operation	$-20^{\circ} \mathrm{C} ; 72 \mathrm{hrs}$
5	High Temperature and HighHumidity Operation	$50^{\circ} \mathrm{C}, 90 \% \mathrm{RH} ; 120 \mathrm{hrs}$
6	Thermal shock(Storage)	$-20^{\circ} \mathrm{C}(0.5 \mathrm{Hr}) \rightarrow 70^{\circ} \mathrm{C}(0.5 \mathrm{Hr})$
		100 Cycles

NOTE:

1. All judgement of display are performed after temperature of panel return to room temperature.
2. Display function should be no change under normal operating condition.
3. Under no condensation of dew.
4. WE only guarantee the above 6 test items, and without guarantee the others.

- PRECAUTIONS

Handing Precautions

(1) The display panel is made of glass and polarizer. As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
(2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
(3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
(4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
(5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents

- Isopropyl alcohol
- Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.
(6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.

- Water
- Ketone
- Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.
(7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
(8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
(9) Do not attempt to disassemble or process the LCD module.
(10) NC terminal should be open. Do not connect anything.
(11) If the logic circuit power is off, do not apply the input signals.
(12) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- Do not alter, modify or change the shape of the tab on the metal frame.
- Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
- Do not damage or modify the pattern writing on the printed circuit board.
- Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- Do not drop, bend or twist LCM.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.
(1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.
(2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between $0^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$.
(3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.
If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability. To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
-Terminal electrode sections.

